1 Рассматриваемые виды уравнений высших степеней

1.1 Уравнения третьей степени (кубические)

Уравнением третьей степени (кубическим) называется уравнение вида $ax^3+bx^2+cx+d=0$.

Приведённым кубическим уравнением называется уравнение вида $x^3+ax^2+bx+c=0$. (Его получают из кубического уравнения путём деления на коэффициент третьей степени переменной).

Каноническим (трёхчленным кубическим уравнением) называют уравнение вида $x^3+mx+n=0$. (Его получают из кубического уравнения путём замены переменной $x=y-\frac{b}{3a}$).

Дискриминант кубического уравнения вычисляется по формуле $D=-4b^3d+b^2c^2-4ac^3+18abcd-27a^2d^2$

Дискриминант канонического кубического уравнения вычисляется по формуле $D=108((m/3)^3+(n/2)^2)$

Если D>0, тогда уравнение имеет три различных вещественных корня.

Если D<0, то уравнение имеет один вещественный корень.

Если D=0, тогда хотя бы два вещественных корня совпадают.

По теореме Виета, если кубическое уравнение имеет 3 вещественных корня, то: $x_1+x_2+x_3=-b/a$, $x_3x_1+x_2$, $x_1+x_2x_3=c/a$, $x_1x_2x_3=-d/a$.

1.2 Уравнения четвёртой степени

Уравнением четвёртой степени называется уравнение вида $ax^4+bx^3+cx^2+dx+e=0$.

Биквадратным называют уравнение четвёртой степени вида $ax^{4}+bx^{2}+c=0$.

1.3 Уравнения высшей степени

Уравнением высшей степени называется уравнение вида $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 = 0.$

Возвратным (симметрическим) уравнение называется если в нем коэффициенты, равноудаленные от концов, совпадают.

Задачу нахождения корней возвратного уравнения сводят к задаче нахождения решений алгебраического уравнения меньшей степени. Термин возвратные уравнения был введён Л.Эйлером.

2 Методы решение уравнений третьей степени

2.1 Разложение на множители (группировка)

При $ax^3+bx^2+cx+d=ax^2(x+b/a)+c(x+d/c)$ — можно вынести за скобки общий множитель, если b/a=d/c. При $ax^3+bx^2+cx+d=ax(x^2+c/a)+b(x^2+d/b)$ – можно вынести за скобки общий множитель, если c/a=d/b.

2.2 Введение новой переменной

Приведение к каноническому виду заменой $x=y-\frac{b}{2a}$.

2.3 Схема Горнера и деление уголком

Рассматривается ниже в решении уравнений высших степеней.

2.4 Графический

Для $ax^3=bx^2+cx+d$ — решение в точках пересечения кубической и квадратичной параболы. Для $x^3=-mx-n$ — решение в точках пересечения кубической параболы и прямой.

2.5 Неопределённых коэффициентов (Теорема Виета)

Сначала определяется степень сомножителей, на которые раскладывается данный многочлен (в случае кубического уравнения это 1-я и 2-я степень, или три сомножителя 1-й степени и тогда по теореме Виета подбираем корни). Эти сомножители с неопределёнными коэффициентами перемножаются и коэффициенты при одинаковых степенях переменной приравниваются. Решается система уравнений.

$$x^{3}+ax^{2}+bx+c=(x-x_{1})(x-x_{2})(x-x_{3}).$$

$$\begin{cases}
x_{1} + x_{2} + x_{3} = -a, \\
x_{3}x_{1} + x_{2} x_{1} + x_{2}x_{3} = b, \\
x_{1}x_{2}x_{3} = -c.
\end{cases}$$

$$\begin{cases}
x_{1} + x_{2} + x_{3} = -a, \\
x_{3}x_{1} + x_{2} x_{1} + x_{2}x_{3} = b, \\
x_{1}x_{2}x_{3} = -c.
\end{cases}$$

$$\begin{cases}
p - x_{1} = a, \\
q - px_{1} = b, \\
qx_{1} = c.
\end{cases}$$

2.6 Метод Кардано

По этому методу находят один из корней кубического уравнения.

Сначала кубическое уравнение приводится к каноническому кубическому уравнению $y^3+ay+b=0$. Затем по формуле Никколо Тартальи снова делаем замену $y=\sqrt[3]{t}-\frac{a}{3\sqrt[3]{t}}$, где t – новая переменная.

После преобразований получают $t-p^3/(27t)+q=0$ и умножив его на t получим квадратное уравнение $t^2+qt-p/27=0$. После получения корней этого уравнения и обратной подстановки оказывается, что корни канонического уравнения можно найти по формуле Кордано

$$y = \sqrt[3]{-\frac{b}{2} + \sqrt{\left(\frac{b}{2}\right)^2 + \left(\frac{a}{3}\right)^3}} + \sqrt[3]{-\frac{b}{2} - \sqrt{\left(\frac{b}{2}\right)^2 + \left(\frac{a}{3}\right)^3}}.$$

2.7 Метод Лиля Рассматривается ниже.

3 Методы решение уравнений высших степени

3.1 Разложение на множители

Его применяют если можно подобрать группы слагаемых так, чтобы после вынесения общего множителя остались одинаковые сомножители, которые тоже выносят за скобки.

3.2 Схема Горнера и деление уголком

Теорема: Пусть несократимая дробь q/p является корнем уравнения $a_nx_n+a_{n-1}x^{n-1}+...+a_1x+a_0=0$ с целыми коэффициентами, тогда число q является делителем старшего коэффициента a_n , а число p является делителем свободного члена a_0 .

Замечание 1. Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Замечание 2. Если старший коэффициент уравнения с целыми коэффициентами равен 1, то все рациональные корни, если они существуют - целые.

Корнем многочлена $f(x)=a_nx_n+a_{n-1}x_{n-1}+...+a_1x+a_0$ является x=c, такое, что f(c)=0.

Замечание 3. Если x=c корень многочлена $f(x)=a_nx_n+a_{n-1}x_{n-1}+...+a_1x+a_0$, то многочлен можно записать в виде: f(x)=(x-c)q(x), где $q(x)=b_{n-1}x_{n-1}+b_{n-2}x_{n-2}+...+b_2x+b_1$ это частное от деления многочлена f(x) на одночлен x-c.

Теорема Безу: Остаток от деления многочлена P(x) на двучлен (x - a) равен P(a).

Следствие из теоремы Безу: Число а является корнем многочлена P(x) тогда и только тогда, когда P(x) делится на (x - a) без остатка.

Схема Горнера:

Если $f(x)=a_nx_n+a_{n-1}x_{n-1}+...+a_1x+a_0$, $a_n\neq 0$, g(x)=x-c, то при делении f(x) на g(x) частное q(x) имеет вид $q(x)=b_nx^{n-1}+b_{n-1}x^{n-2}+...+b_2x+b_1$, где $b_n=a_n$, $b_k=cb_{k+1}+a_k$, k=1,2,...,n-1. Остаток r находится по формуле $r=c.b_1+a_0$.

В первой строке этой таблицы записывают коэффициенты многочлена f(x). Если x=c является корнем многочлена, то остаток от деления равен нулю.

При делении уголком как раз и получаются коэффициенты из таблицы Горнера. Правда уголком можно делить не только на выражение x-c, но и на более сложные многочлены.

3.3 Деление на подходящее выражение с переменной (метод переброски, решение возвратных уравнений)

Чтобы избежать поиска дробных корней по схеме Горнера делят весь многочлен на x_n и получают $q(x) = a_n + a_{n-1}(1/x) + ... + a_1(1/x^{n-1}) + a_0(1/x^n)$, заменяют y=1/x – метод переброски.

Различают возвратные (симметрические) уравнения чётного и нечётного порядка:

- Симметрическое уравнение нечетной степени имеет корень х=-1.
- В результате деления симметрического уравнения нечетной степени на (x+1) получается симметрическое уравнение четной степени на единицу меньше.
- Симметрическое уравнение четной степени решают путём деления уравнения на $x^{n/2}$ и подстановкой y=x+1/x.

3.4 Введение новой переменной

Одинаковые составляющие части уравнения, содержащие переменные, заменяют на новую переменную.

В случае биквадратных уравнений выполняют замену $y=x^2$.

В случае переброски выполняют замену y=1/x.

В случае возвратных уравнений при замене переменных y=x+1/x, возведя обе части в квадрат получаем $y^2=x^2+1/x^2+2$ и $y^3=x^3+1/x^3+3(x+1/x)=x^3+1/x^3+3y$. Получаем $y^2-2=x^2+1/x^2$ и $y^3-3y=x^3+1/x^3$.

Если уравнение удалось свести к виду $(x-a)^n+(x-b)^n=k$ делают замену переменной y=x-(a+b)/2.

3.5 Метод неопределённых коэффициентов

Сначала определяется степень сомножителей, на которые раскладывается данный многочлен (в случае уравнения 4-й степени это два сомножителя второй степени). Эти сомножители с неопределёнными коэффициентами перемножаются и коэффициенты при одинаковых степенях переменной приравниваются. Решается система уравнений.

3.6 Графический метод

Метод основан на использовании графических иллюстраций или какихлибо свойств функций. В одной системе координат строим графики функций, записанные в левой и в правой частях уравнения, затем, находим точку (точки) их пересечения. Абсцисса найденной точки является решением уравнения.

3.7 Решение уравнений по формулам сокращённого умножения

Квадрат суммы: $(a+b)^2=a^2+2ab+b^2$

Квадрат разности: $(a-b)^2 = a^2 - 2ab + b^2$

Разность квадратов: $a^2-b^2=(a-b)(a+b)$

Куб суммы: $(a+b)^3=a^3+3a^2b+3ab^2+b^3$

Куб разности: $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Сумма кубов: $a^3+b^3=(a+b)(a^2-ab+b^2)$

Разность кубов: $a^3-b^3=(a-b)(a^2+ab+b^2)$

Разность n-й степени: a^n - b^n =(a- $b)(a^{n-1}+a^{n-2}b^2+...+a^2b^{n-2}+b^{n-1})$

3.8 Метод Феррари

Метод Феррари применяется для приведённого уравнений 4-й степени $x^4+ax^3+bx^2+cx+d=0$ и заключается он в том, чтобы найти любой корень y_0 кубического уравнения $y^3-by^2+(ac-4d)y-a^2d+4bd-c^2=0$ а затем решают квадратные

$$x^2+a/2x+y_0/2\pm\sqrt{\left(\frac{a^2}{4}-b+y_0\right)x^2+\left(\frac{a}{2}y_0-c\right)x+\frac{y_0^2}{4}-d}$$
=0. Корни этих

уравнений являются корнями исходного уравнения четвёртой степени.

3.9 Метод Лиля (графическое представление схемы Горнера)

Метод Лиля назван в честь австрийского инженера Эдуарда Лиля, который предложил его в 1867 году, а в 1936 году, Маргарита Белох использовала этот метод для решения кубических уравнений с помощью складывания оригами.

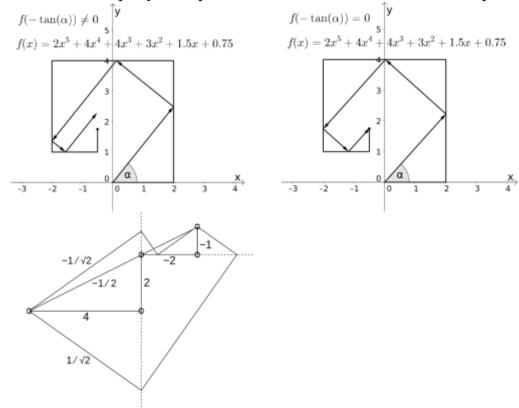
Из начала координат чертится прямоугольная ломаная линия по циклическому правилу *вправо*, *вверх*, *влево*, *вниз* (если коэффициент отрицательный то *вверх* заменятся на *вниз*, *вправо* на *влево* и т.д.). п-е звено по длине равно п-ному коэффициенту. Процесс продолжается для каждого коэффициента, включая нули. Для многочлена п-й степени получаем ломаную из n+1 звена.

В полученную ломаную вписывается прямоугольная ломаная, соединяющая концы исходной с вершинами, расположенными последовательно на звеньях исходной ломаной или их продолжениях так, чтобы начавшись в начальной точке О ломаная после всех отражений попала в конечную точку.

Угловой коэффициент начального звена вписанной ломаной, взятый с обратным знаком, является корнем исходного многочлена.

Таким способом может быть получен любой вещественный корень уравнения.

Сложность метода заключена в том, что мы подбираем угол самостоятельно и пробуем отражать как от звеньев, так и от их продолжений.



Корни $-\frac{1}{2}$, $\pm \frac{1}{\sqrt{2}}$ уравнения $4x^3 + 2x^2 - 2x - 1 = 0$ соответствуют угловым коэффициентам вписанных прямоугольных ломаных.

Рассматриваемые уравнения и методы их решения можно использовать для развития логики учащихся, и использовать для учебных занятий по математике на повышенном уровне и в олимпиадных заданиях.

Примеры решений таких уравнений рассмотрены в Приложении 2.